
www.manaraa.com

Data Structures in the Design of Interfaces

G. Marsden1, H. Thimbleby2, M. Jones2 and P. Gillary2

1Department of Computing Science, University of Cape Town, South Africa; 2School of Computing
Science, Middlesex University, London, UK

Abstract: Computer science algorithms can be used to improve user interfaces. Using data structures as a source of design ideas, a new
interface was constructed for a cellular telephone handset. Once implemented, a user experiment was conducted which showed that
predicted improvements in usability were confirmed with real users doing realistic tasks.

Keywords: Cellular handset interaction; Menu design

1. Motivation

Around 80% of cellular telephone users only use
their handsets to receive calls and make calls
dialled directly on the keypad [1] – in other
words, they do not use any facilities other than
those provided on the most basic of land-based
telephones. One might speculate that users may
not want any more functionality, but the nature
of a cellular telephone almost demands that the
user investigate configuration options (for ex-
ample, because the handset will move from
noisy to quiet environments, the user will need
to adjust the ringing tone to an appropriate
level). It is also clear from the calls received by
help-lines set up by the cellular service providers
that users do want to access features of their
handset, but are hindered by the handset’s
interface.

The work presented in this paper was
initiated by a cellular service provider who
was concerned not only about how much the
help-lines were costing the company, but also
about lost earnings because users were not
bothering to access premium rate services (e.g.
voice mail, traffic reports). Both problems are
primarily due to overly complicated configura-
tion options on their handsets. These same
concerns are also echoed by [2], another cellular
service provider who has also become concerned
about the handsets they are supplying to their
customers.

The original aim of the work described in this
paper was to design a new interface to cellular
handset features which users could access more

easily than existing interface designs. The paper
reports several design alternatives and the results
of user testing the final design.

1.1. The problem

The interface for most cellular handsets is a
hierarchical tree of menu choices. Features are
grouped logically by operation and the overall
structure is navigated by providing parent, child
and closest-sibling navigation at each node (see
Fig. 1).

Whilst menus are effective in overcoming
command recall problems on a typical computer
monitor, it is not clear that they are an effective
solution for structuring interaction on a cellular
handset, which has a greatly reduced screen size.
Typical handset screens can display only one
menu option at a time, forcing users to
remember the other options in each menu. As
the menus are nested (sometimes to a depth of
four levels) it is little wonder that users become
confused about their location in the menu
structure and where to find the command they
want. This is often compounded by the classifi-

132

Ownership and Copyright
Springer-Verlag London Ltd
Personal and Ubiquitous Computing (2002) 6:132–140

Fig. 1. Interface menu hierarchy. Scrolling right from the
third child returns to the first child. Scrolling left from the
first child moves to the third child.

www.manaraa.com

cations and ordering used in the menus, which
may not agree with how the user would choose
to classify functions.

We agree with Alexander that hierarchical
tree type classifications are not a natural way of
organising structures for humans [3]. (Alexan-
der’s main argument is that trees are good for
designing, because the designers know the
classification system, but they are not good for
users who do not know the classification, or
perhaps even the names and relations of the
commands). The user of a cellular handset must
guess how the handset’s designer would classify
a particular function – for example, does a
function to set the ringing volume belong in
the ‘Tones’ menu or the ‘Phone Settings’
menu?1

Besides problems of menu structure aware-
ness, displaying one menu option at a time
means that the user must perform many key
presses in order to navigate to the desired option.
Increasing the number of key presses required
will obviously increase the likelihood of making
an error in input.

To solve these sorts of problems of interaction
with cellular telephone handsets, it is necessary
to develop a solution which was not based on
traditional hierarchical menus but employed an
alternate interaction paradigm.

2. Where to Look for a Solution

Although there are handsets coming on to the
market which have large, touch screen displays,
small screens are likely to remain dominant in
the handheld market for a long time. Even if
higher-resolution screens are made available,
ageing populations (with poor eyesight) or
usage requirements in harsh environments (bad
lighting, while driving) suggest that solving small
screen interaction will remain an important
problem. The present work was concerned only
with standard handsets with small screens and
push button-style interaction. There are many
comments we could make on the physical design
of the handsets (such as better affordances on
volume buttons) but, in the interests of brevity,
we shall concern ourselves only with the soft-
ware of the interface rather than the hardware.
Our comments and general results (if not the
absolute timings) therefore apply even if the

hardware is changed radically: for instance, if it
was pen based or even speech operated.

What then can be said of the interface
software? Although working at institutions
which employ human-computer interaction re-
searchers from a diversity of backgrounds, the
authors of this particular paper are all computer
scientists (albeit experienced in HCI). It seemed
logical, therefore, to start investigating the
interaction problems by considering the char-
acteristics of the menu as a data structure. To
start our investigation, we first of all conducted
an analysis of an existing handset.

2.1. Existing handset

To serve as an illustration of our analysis, we
present the example of a Nokia 5110 handset.
The results of the analysis are in no way unique
to this handset or manufacturer, but the 5110 is
interesting as it is a very popular handset. Other
people reading this paper and wishing to repeat
our work will find the Nokia 5110 readily
available. Furthermore, the Nokia 5110 is
marketed on its ease of use; the following is
taken from 5110 promotional material [4]:

Use your phone as you want. Send short messages,
save names and numbers, select a new ringing tone –
all with the press of a single key, the Nokia NaviTM

Key.

The Nokia handset has 74 functions which are of
interest to us. The handset provides other
functions that are not accessible from the menu
(such as keypad locking and ear-piece volume
adjust), placing them outside the scope of our
study.

In this analysis we were interested in the
cognitive overhead imposed on a user trying to
access a menu function. There is a distinction
between accessing a function and activating a
function: activation requires the user to enter
some data, which will be different for different
functions; accessing a function is the act of
locating the desired function in the menu
structure without activating it. Relative costs of
function accessibility can be easily calculated by
counting key presses – keys being the only way to
navigate the menu structure. The navigation
keys are as shown in Table 1.

We shall assume a naı̈ve user, who has not
memorised the positions of every function in the
memory structure and must therefore scroll to
find the required function (this is likely to be the

133

1On the Nokia 5110, it belongs in the ‘Tones’ menu.

Data Structures in the Design of InterfacesData Structures in the Design of Interfaces

www.manaraa.com

case for most users). Therefore, the menu
structure should support both direct function
access (where the user knows what function they
are looking for) and browse-style accessing
(where the user wishes browse through all the
functions provided by the handset).

Although the menu structure was organised to
favour breadth over depth, as recommended by
Miller [5], the user must perform 8.2 key presses
on average to access a function. To access the
most nested function in the menu, a maximum of
15 key presses are required. For a browsing
interaction, the user would need to perform a
minimum of 110 key presses to access every
function! (A distribution of key presses is given
in Fig. 2.)

These calculations represent a best-case
scenario, where the user makes no errors in
input and is able to recognise the correct menu
option when it appears on the screen. If the user
makes errors, they will take longer; and, of
course, if they do not recognise the function they
want, it could take forever! Indeed, users may

not be sure when first they see a function that it
is the actual one they want, so they would then
scan the rest of the function names and
eventually try to come back. Such usage is very
slow. In any case, as our experiments show,
optimal use is unachievable in practice – in fact,
many subjects in our study became caught in
loops within the menu structure, never finding
the target function.

The brief analysis of the 5110 depends on
other assumptions, such as the distribution of
function access. For simplicity we assumed all
functions were used equally often, but if an
easily-accessed function were used more often,
then the average would decrease. A more
thorough discussion of function weighting can
be found in [6].

2.2. Alternate design

A data structure that requires an average of 8.2
key presses to access a given function seems
somewhat sub-optimal. Treating this as a com-
puting science problem, one way to improve the
menu tree is to restructure it as a balanced binary
tree. Users searching for a menu item would
navigate on the alphabetic order of the function
name they were searching for. At each node in
the tree, users would either select the function
name at that node, or choose to navigate down
the node’s left or right branch. This scheme uses
the four navigation buttons slightly differently,
as shown in Table 2. This solution would reduce
the average cost of selection from 8.2 key presses
to 5.4 key presses (Table 3).

134

Table 1. Keys used in navigating the current Nokia 5110
menu structure

Fig. 2. Plot of the number of functions accessable from a
given number of key presses.

Table 2. Keys used in navigating the new menu structure

G. Marsden et al

www.manaraa.com

Furthermore, the worst-case search path is
reduced from 15 to 7 presses. However, by
maintaining the hierarchical tree structure, the
task of visiting every node in the structure is still
daunting, requiring the user to make 148 key
presses.

Of course, to remove the navigational diffi-
culties of a tree structure, we could flatten the
structure to a linear list. This would allow users
to visit every function with only 74 key presses;
what is more, the key being pressed would be the
same every time. However, with a list, the
average search time is 37.5 key presses and the
worst case search requires 74 key presses.

It was clear from these preliminary design
investigations that an alternative solution would
need to be sought which supported both directed
and browsing style access.

2.3. Final design solution

The final design solution was based on the
technique of hashing [7]. Hashing usually in-
volves calculating a memory or storage location
from a key value. For cellular handsets, we
developed a hashing function based around the
fact that each numeric key on the keypad is also
used to represent alphabetic characters: for
example, the ‘1’ key also has the letters ‘abc’
printed on it. Therefore, it was possible to build a
hash table where the names of the functions
were represented as numerical strings. For
example, the word ‘call‘ would be encoded as
‘2255’ – the ‘2’ key contains the letters ‘a’ and ‘c’;
the ‘5’ key contains the letter ‘l’.

To retrieve a function, the user merely spells
out the name of the target function using the
numeric keys. Whilst the input may be ambig-

uous (each key represents between three and
four distinct letters), the input can be disambig-
uated by the hash table in 2.7 key presses (on
average).

Previously, other systems have attempted to
exploit the letters on a telephone keypad. Rau
and Skiena [8] give an excellent review of
keyboard text entry using numeric keys, though
their aim was to reconstruct English text without
any interaction. They achieved 99% correct
identification of characters. The T9 system [9],
again intended for natural language text entry,
ensures accuracy by interactively asking the user
to select from ambiguous choices. More com-
monly, systems such as SRS from IBM [10]
require the user to enter unambiguous input in
the first place. This inevitably results in many
more key presses; for example, to enter the letter
‘c’, would require the user to press the ‘2’ key
three times (once for ‘a’, twice for ‘b’ and three
times for ‘c’).

In the situation presented here (namely, using
the keypad to access menus) the user is not
inputting novel data. Therefore, any input can
be unambiguously mapped to one of 74 possible
function names. Selection occurs as follows.

Let us imagine a user wishing to select the
‘Limit Call Cost’ function (a full list of functions
can be found in appendix A). The user presses
the ‘5’ key (as it contains the letter ‘L’) and the
screen presents all menu options starting with ‘J’,
‘K’ or ‘L’. In this case there are three matches as
shown below:

The user now presses the ‘4’ key which, in this
case, unambiguously selects the ‘Limit Call Cost’
function – this is the only function whose first
letter is ‘J’, ‘K’ or ‘L’ and whose second letter is
‘G’ or ‘H’ or ‘I’.

This algorithm was first prototyped in Bongo
and then implemented as a full Java 1.1 applet.
The Java version can be seen in Fig. 3.

135

Table 3. Method of calculating average key presses for binary
tree menu

There are 74 functions and, as they have different alphabetic
names, a balanced tree gives them unique position. A binary
tree with six levels can accommodate 63 functions; with
seven levels it can accommodate 127 functions. 74 functions
therefore require six full levels and a seventh level only 15%
((74–63)/64) full. The way binary trees work, one command
(e.g. the most popular) can be accessed immediately by
pressing Navi; two commands can be accessed by pressing
either Up or Down and then Navi; four commands can be
accessed by pressing either Up or Down twice and then Navi
. . . and so on. The average number of key presses required to
access a function (rather than activate it) is calculated as
(161 + 262 + 463 + 864 + 1665 + 3266 + 1167)/74,
which is 5.4

Data Structures in the Design of InterfacesData Structures in the Design of Interfaces

www.manaraa.com

3. Combining Function Access
with Dialling

Most handsets are normally in ‘dial’ mode, when
pressing any digit key starts entering a telephone
number. Menu selection of functions is achieved
in a separate mode, which on the Nokia 5110 is
first entered by pressing the Navi key. When in
‘menu’ mode, the numeric keys cannot be used
for entering a telephone number; indeed, the
numeric keys now function as a short cut, a faster
way of navigating the function menu.

Since our approach uses the numeric keys
naturally to navigate the function menu, it is
important to reduce this mode confusion. We
achieved a modeless design as follows.

Users use the keys to enter a telephone
number or to spell a function name. If the user
wishes to place a call, then they simply press the
call button. If they wish to select a function, they
can press the selection button (in our imple-
mentation, the button to the right of the scroll
keys). What may not be clear from the diagram
(Fig. 3) is that the top menu item is in bold
which, in conjunction with the line down the
right-hand side of the screen, indicates that this
function will be selected when the selection
button is pressed.

As well as spelling the name, the user is free
to use the scroll buttons to move the function
they require into the selection position. There-

fore, if the user, whose screen we see in Fig. 3,
had been looking for ‘Limit Call Cost’ they need
not spell the rest of the name but merely press
the ‘Down’ key twice. When searching for a
particular function, it is the use of the scroll key
that allows us to reduce the maximum key
presses from nine (using hashing only) to a
maximum of six (with combined hashing and
scrolling). It is also the scroll keys that allow the
functions to be searched in a linear fashion,
requiring 74 key presses to access every function.
(It should be noted that this is an experimental
prototype and issues of button placement were
not considered.)

In summary, the use of hash tables provides a
solution which blends the best attributes of trees
and linear lists to build a structure similar to a
B+Tree (similar in the fact that a node can be
accessed by an indexing technique – like hashing
– or accessed linearly as part of a linked list). The
users of these data structures are not computers
however, but ordinary – emotional and incon-
sistent – humans. In order to test the effective-
ness of this new interface paradigm, it was
necessary to conduct usability tests.

4. Experiment Design

The aim of the experiments was to test the
following hypotheses:

1. The hash based interface would require fewer
key presses for function access than an
interface based on a traditional menu struc-
ture.

2. The users of a hash based interface would
require less time to access a function than an
interface based on a traditional menu struc-
ture.

4.1. Subjects

In total, 30 subjects took part in the test; they
consisted of students, academics and adminis-
trative staff from a variety of university depart-
ments. Two distinct groups were required for the
experiment. Subjects were rated on their experi-
ence with using cellular telephone handsets to
ensure that each group consisted of equal
numbers of novices (who had never used a
mobile telephone) and experts (who were able to
change at least one setting on their handset). An
even gender and age mix was also ensured in
each group.

136

Fig. 3. Screenshot of the new design based on hashing.

G. Marsden et al

www.manaraa.com

4.2. Simulations

Two handset simulations were created for the
experiment. One used the menu structure of the
Nokia 5110; the other used the hashing algo-
rithm. Both simulations provided access to
exactly the same function list; however, the
hash phone also had some synonyms for function
names. Providing too many synonyms would bias
the experiment toward the hash handset, so each
function name was allowed a maximum of one
synonym to compensate for noun–verb and
verb–noun transpositioning; for example ‘Ring-
ing volume’ was also replicated as ‘Volume of
ring’. These simulations can be found online at
[11].

4.3. Procedure

Each subject was given a brief (approximately
five minute) explanation of how each handset
worked and a demonstration of the type of task
they would be expected to perform during the
actual experiment. The main purpose of the
explanation and demonstration was to ensure
familiarity with the computer simulation which
required the mouse to press the on-screen
buttons. Instruction sheets were also left for the
subjects to refer to, should they need reminding
of how either simulation worked.

Each subject was then given a set of 24 tasks
to complete, 12 with each handset. A typical
task is as follows:

Your phone’s capacity to store numbers is almost at its
limit. Check to see how much space you have left.

The subject would then search for the
function which they felt would be used to
complete the task. A subject’s interaction with
the simulation was observed by means of a video
splitting cable, which allowed the experimenter
to unobtrusively view on their own monitor what
was happening on the subject’s screen. The
output to this second screen was also recorded to
aid in the post-experiment interviews.

Subjects were told that they would be given a
maximum of two minutes to complete the task or
they could choose to give up before the two
minutes had elapsed. The idea of self-retirement
from a task came from some pre-experiments,
where it was clear that users could become
locked in a loop within the menu structure and
would never find the function they sought.

The order in which the tasks were presented

to subjects was randomly re-allocated after each
subject had completed the experiment. Any
given task could have occurred with either the
hash-based handset or the menu-based handset.
By changing the tasks to be performed on each
handset, we ensured that the difficulty experi-
enced in using a given handset was due to the
handset itself, not the difficulty of the tasks
allocated to that handset.

Furthermore, by having two groups of sub-
jects, it was possible to remove ordering effects
by having one group complete their first 12 tasks
with the standard simulation and the other group
start with the new design simulation. Subjects
then swapped and completed the last 12 tasks
using the alternative simulation.

The wording of the tasks was carefully chosen
so as not to prime subjects and bias them in
favour of one particular simulation. For example,
the sample task given above does not use the
word ‘Memory’ anywhere as this may favour the
hashing simulation which relies on the user
entering (Nokia’s) key words. By removing these
key words from the task description, subjects
were required to guess what words they should
search for.

After completing the experiment, subjects
were given a brief interview which was intended
to extract the subjective opinion about using
each handset. Subjects were also ask to supply
the words they searched for when using the hash
handset. (Rather than attempting a disruptive
technique such as think aloud, or interrupting
subjects after each task, the video recording of
the interaction was used to remind subjects in
the post-experiment interviews).

4.4. Results

The experimental scenarios completed on the
new design took, on average, 9.54 key presses to
complete, in comparison to the standard design
where 16.52 key presses were required. This is a
strongly significant result (repeated measures one
tailed t test, t=3.4, df=29, p<0.001) with users
requiring approximately 7 fewer key presses, on
average, to access the functions (Fig. 4).

We discovered a significant difference in
mean times between phone types (repeated
measures one tailed t test, t=1.95, df=29,
p<0.03) (Fig. 5). The overall mean time for
the hash phone is 33.42 seconds as compared to
42.02 seconds for the normal handset. This
means that regular phone use is taking a quarter

137

Data Structures in the Design of InterfacesData Structures in the Design of Interfaces

www.manaraa.com

of the time that hash phones use. This is a
considerable improvement for hash phone users.

4.5. Observations

From the subjects’ feedback, and from analysing
the video recordings we also made the following
observations.

. Almost every subject preferred the modified
design. This may be due to the fact that it was
novel, but many subjects gave convincing
reasons such as ‘I was able to see all the items
in the list— nothing was hidden’.

. The frustration of subjects when using the
standard design was obvious. They would

138

Fig. 4. Box plot showing distributions of key presses used in accessing functions for the hash-based handset and the menu-based

Fig. 5. Box plot showing distributions of the time taken to access functions for the hash-based handset and the menu-based handset.

G. Marsden et al

www.manaraa.com

repeatedly become lost as they could not
memorize, or visualise, the menu structure.
Many subjects became caught in cycles within
the menu structure (connections between
menu siblings are in a continuous loop) from
which they could not escape.

. The ability of the hash handset to scroll
through all the functions as a linear list proved
very popular with users. In fact, our key press
and time scores suffered because three users on
the trial ignored the hash-based access to the
functions and simply scrolled each time to the
function they wanted. These users felt that
this was a ‘safer’, or guaranteed way to find
they function they needed. So whilst scrolling
may be a slower way to interact, these users
willingly sacrificed speed in order to improve
their likelihood of finding the function they
sought. This ‘fail-safe’ method of accessing
functions is not possible on most current
handsets.

. First-time users were confused by having to
enter the menu system on the regular
handsets. Quite often they would start to
scroll without pressing the ‘Menu’ soft key and
become frustrated when they did not see the
menu options appearing. Because the hash
handset is modeless, these problems were
avoided.

5. Design Implications

The results from the experiment support our
original decision to base the interface on an
optimal data structure. This is not a new idea,
having been expressed by Thimbleby as early as
1990 [12], but it is, to our knowledge at least, the
first interface that has been created in this way.

Besides giving a quantitative insight into
issues such as reductions in key presses, there
are side effects from using an algorithmic
approach.

. The idea of providing access to data both
sequentially and randomly is well understood
in computer science, and it seems the same is
true for users. In effect, this parallels the
notion of providing different interfaces for
expert and novice users, something which is
not easy to achieve (especially when users
migrate from being novice to expert). Our
solution provides both hash-based and linear

access to the function set in a mutually
supporting way!

. The interface behaves in a very consistent way
– after all, the interface is generated from a
tightly defined source (a computer algorithm).

. It is possible to create shorter user manuals
that concentrate on the functionality of the
device, not how to access functions. Access to
functions is reduced to describing the algo-
rithm used to create the interface, not the
menu structure resulting from a designer’s
thought process.

It is our belief that other interfaces design could
benefit greatly from our result. Books such as [7]
which list many different data structures and
data access algorithms can be used as sources of
ideas for interface design. These ideas also
provide the designer with analyses and quanti-
tative information about design trade-offs in
terms of cost of interaction to access desired
functions – this is useful but unusual in user
interface design!

6. Future Work

The cellular telephone handsets we examined
permitted only key-based interaction. We are
now interested in discovering if our results hold
true for other embedded computer systems with
different physical characteristics. New handsets
have new interaction devices, such as scrolling
wheels, which are faster than scrolling by key
pressing. We are currently building a design tool
that will allow interface designers to specify the
physical constraints of the device they wish to
model and trade off different design solutions to
reduce the cost of interaction to its theoretical
minimum.

7. Conclusions

A novel interface for cellular telephone handsets
based on data structure research was presented.
Our analysis showed that our interface should
greatly reduce the number of keystrokes required
to access a given function. User experiments
confirmed this result and also gave us valuable
qualitative information: users expressed strongly
in favour of the new user interfaces.

139

Data Structures in the Design of InterfacesData Structures in the Design of Interfaces

www.manaraa.com

Acknowledgements

This work was originally supported by EPSRC
grant GR/M14548. Handsets were donated by
Orange plc. Thanks to David Nunez in preparing
an analysis of the statistics.

References

1. Weaver B. Enhancing ergonomic design for greater
appeal at point of sale. In: Proceedings of User Interface
Design for Mobile Terminals, 1998, Section 2

2. Youngs E. Evaluating the impact of application,
ergonomic and process design on handset success. In:
Proceedings of User Interface Design for Mobile
Terminals, 1998, Section 1

3. Alexander C. A city is not a tree. Design, 1965; 206: 46–
55

4. Nokia. http://www.nokia.com/phones/5110/index.html.
Last visited 4 May 2000

5. Miller DP. The depth/breadth tradeoff in hierarchical
computer menus. In: Proceedings of the Human Factors
Society 25th Annual Meeting, 1981; 296–300

6. Thimbleby H. Analysis and simulation of user interfaces.
In: McDonald S, Waern Y, Cockton G (eds.) BCS
Conference on Human-Computer Interaction XIV,
2000; 221–237

7. Cormen TH, Leiserson CE, Rivest RL. Introduction to
algorithms. MIT Press, 1990

8. Rau H, Skiena S. Dialing for documents: an experiment
in information theory. Journal of Visual Languages and
Computing 1996; 7: 79–95

9. Tegic. http://www.tegic.com/. Last visited 6 June 2000

10. Gould JD, Boies SJ. Speech filing – an office system for
principals. In: Baecker R, Buxton W. (eds.) Readings in
Human Computer Interaction. 1987; 8–24

11. Marsden G. Java handset implementation. At http://
www.cs.uct.ac.za/~gaz/, last visited 31 May 2001

12. Thimbleby H. User interface design. Addison Wesley,
1990

Correspondence to: Gary Marsden, Department of Computing
Science, University of Cape Town, Rondebosch 7701, South
Africa. Email: gaz@cs.uct.ac.za

140

Appendix A

Here are the menu options used in the study.
Those not in bold are branch nodes and do not
represent an actual function.

Phone Book
Search
Add entry
Erase
Edit
Send entry
Options
Type of view
Memory status

Speed dials

Messages
Inbox
Outbox
Write
Message settings
Message centre number
Message sent as
Message validity

Common
Delivery report
Reply via same centre

Info Service
Off
Topics index
Topics
Select
Add
Edit
Erase

Language
On

Voice mailbox number

Call Register
Missed calls
Received calls
Dialled numbers
Erase recent call lists
Show call duration
Last call
All calls
Received calls
Dialled
Clear timer

Show call costs
Last call
All calls
Clear counter

Call cost settings
Call cost limit
Show costs in

Settings
Call settings
Auto redial
Speed dialling
Call waiting option
Own number sending

Phone Settings
Language
Cell info display
Welcome note
Network selection

Security Settings
PIN code request
Fixed dialling
Closed user group
Security level
Change access codes
Change PIN code
Change PIN2 code
Change security code

Restore factory settings

Call Divert
Divert all
Divert when busy
Divert when not answered
Divert when phone off
Cancel all diverts

Games
Memory
Snake
Logic

Calculator

Clock
Alarm
Settings
Hide
Set time
Time format

Tones
Incoming alert
Ring tone
Volume
Message alert
Keypad tones
Warning and game tones

G. Marsden et al

